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1. Problem 1

Let {xn} be a bounded sequence of real numbers. Then, we can find

an upper and lower bound M and m, respectively for this sequence.

Thus, for all n, xn ∈ [m,M ] := I0. Choose some xn0 ∈ I0.

Now, consider splitting I0 as the intervals [m+m/2]∪ [m/2,M ]. In

at least one of these intervals, there exists an infinite number of points

of {xn}. Define this new subinterval as I1 ⊂ I0 and find xn1 ∈ I1.

We now proceed inductively: at the kth step, split the interval Ik

in half and choose Ik+1 as the subset containing an infinite number of

points of {xn}. This is possible since by construction, Ik has an infinite

number of points of {xn} as well (so if neither half of Ik had an infinite

number neither would Ik).

Choose xnk+1
∈ Ik+1 and note that the length of Ik+1 is m+M

2k+1 . Thus,

letting k → ∞, we have an infinite sequence of nested intervals I0 ⊃

I1 ⊃ I2 ⊃ . . . where the length of Ik tends to 0. By the nested interval

property, there exists x∗ ∈
⋂
n

In.

It remains to show the subsequence {xnk
} converges to the limit x∗.

Thus, given ε > 0, we can find k such that m+M
2k

< ε, so that when

l ≥ k,
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|xnl
− x∗| < m+M

2k
< ε

So that xnk
→ x∗ by definition.

2. Problem 2

Let E ⊂ F . Since F ⊂ F̄ , we have that E ⊂ F̄ . However, F̄ is a

closed set, and the closure of E is the smallest closed set containing E.

Thus, Ē ⊂ F̄ , and we are done.

3. Problem 3

Assume first that F is closed, and suppose for sake of contradiction

that there exists some x /∈ F such that every neighborhood of x inter-

sects F . Then, by definition, x is a limit point of F so that x ∈ F̄ = F ,

a clear contradiction. Thus, F c must be open.

Conversely, argue by contraposition. Suppose F is not closed, so

that we can find x ∈ F̄\F . By definition, every neighborhood of x must

intersect F (since it belongs to the closure). However, since x /∈ F , this

means that there is no open neighborhood U of x for which U ⊂ F c,

implying that F c is not open, so we are done.

4. Problem 4

Let X = {1, 2, 3, 4, 5}. For F1, it is clear that {3} ∈ σ(F ). Also,

∅ and X ∈ σ(F1). Finally, {3}c = {1, 2, 4, 5} ∈ σ(F1). Checking

intersections and unions, we see that this exhausts the elements of

σ(F1) so that

σ(F1) = {∅, X, {3}, {1, 2, 4, 5}}
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Similarly for the set F2 = {{3}, {4}}, we have that ∅, X ∈ σ(F2).

Also, as F1 ⊂ F2, σ(F1) ⊂ σ(F2).

By definition, {3} and {4} ∈ σ(F2), which then forces their union

{3, 4} ∈ σ(F2). Consequently, {3, 4}c = {1, 2, 5} ∈ σ(F2), and

similarly {4}c = {1, 2, 3, 5} ∈ σ(F2). Checking intersections and

unions we see that this exhausts all elements of σ(F2) (keeping in mind

we’ve used that σ(F1) ⊂ σ(F2)). Therefore,

σ(F2) = {∅, X, {3}, {4}, {1, 2, 4, 5}, {3, 4}, {1, 2, 5}, {1, 2, 3, 5}}

5. Problem 5

We first show that the sequence of Fn(t) is an ascending chain. Let

x ∈ Fn−1(t). Then, by definition, fn−1(x) ≥ t. But fn(x) ≥ fn−1(x) ≥

t, so that Fn(t) ⊃ Fn−1(t) for all t.

Using this, by definition lim
n→∞

Fn(t) :=
∞⋃
n=1

Fn(t).

Suppose now that x ∈
⋃∞

n=1 Fn(t). Then, for some N , fn(x) ≥ t for

all n ≥ N , and since this is an increasing sequence, f(x) ≥ fn(x) ≥ t

for all n ∈ N. By definition, this shows that x ∈ F (t), so that

lim
n→∞

Fn(t) ⊆ F (t)

To prove this inclusion is strict, consider the sequence of functions

defined by fn(x) = −x2

n
. It is clear that f1(x) ≤ f2(x) ≤ . . . , and

furthermore we see that the fn converge pointwise to f ≡ 0.

Now set t = 0. Then for all n ∈ N, Fn(0) is the set of all x such that

x2/n ≤ 0, which is clearly just the singleton {0}. Thus, we see that

lim
n→∞

Fn(0) = {0}.
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Now for F (0), since f(x) = 0 for all x, F (0) is in fact R, so we clearly

have strict inclusion. 1

1Actually, an even simpler example shows how strict this inclusion really is:
Just define fn(x) = −1/n. Then fn → 0 uniformly, and Fn(0) = ∅ for all n but
F (t) = R.


