REAL ANALYSIS HOMEWORK 3

KELLER VANDEBOGERT

1. PROBLEM 1

Let {z,} be a bounded sequence of real numbers. Then, we can find
an upper and lower bound M and m, respectively for this sequence.
Thus, for all n, x, € [m, M] := Iy. Choose some z,, € .

Now, consider splitting Iy as the intervals [m +m/2] U [m/2, M]. In
at least one of these intervals, there exists an infinite number of points
of {z,,}. Define this new subinterval as I; C Iy and find z,, € I.

We now proceed inductively: at the kth step, split the interval I
in half and choose I, as the subset containing an infinite number of
points of {x, }. This is possible since by construction, I; has an infinite
number of points of {x,} as well (so if neither half of I; had an infinite
number neither would ).

Choose z,, , € Ir41 and note that the length of I; 1 is ”;,j—f{[ Thus,
letting k& — oo, we have an infinite sequence of nested intervals Iy D

I D I, D ... where the length of I tends to 0. By the nested interval

property, there exists z* € ﬂ I,.

n
It remains to show the subsequence {z,, } converges to the limit z*.

m-+M
2k

Thus, given € > 0, we can find k£ such that < €, so that when

1>k,
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So that z,, — * by definition.

2. PROBLEM 2

Let E C F. Since F' C F, we have that £ C F. However, F is a
closed set, and the closure of E is the smallest closed set containing F.

Thus, E C F, and we are done.

3. PROBLEM 3

Assume first that F' is closed, and suppose for sake of contradiction
that there exists some = ¢ F' such that every neighborhood of x inter-
sects F. Then, by definition, z is a limit point of F so that z € F = F,
a clear contradiction. Thus, F'° must be open.

Conversely, argue by contraposition. Suppose F' is not closed, so
that we can find € F\\ F. By definition, every neighborhood of x must
intersect I’ (since it belongs to the closure). However, since x ¢ F', this
means that there is no open neighborhood U of x for which U C F*¢,

implying that F° is not open, so we are done.

4. PROBLEM 4

Let X ={1, 2, 3, 4, 5}. For Fy, it is clear that {3} € o(F). Also,
@ and X € o(Fy). Finally, {3}¢ = {1, 2, 4, 5} € o(F;). Checking
intersections and unions, we see that this exhausts the elements of

o(Fy) so that

o(F) =12, X, {3}, {1, 2, 4, 5}}
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Similarly for the set Fy = {{3}, {4}}, we have that @, X € o(Fy).
Also, as I} C Fy, o(F) C o(Fy).

By definition, {3} and {4} € o(Fz), which then forces their union
{3, 4} € o(Fy). Consequently, {3, 4} = {1, 2, 5} € o(F»), and
similarly {4} = {1, 2, 3, 5} € o(F3). Checking intersections and
unions we see that this exhausts all elements of o(F3) (keeping in mind

we've used that o(F)) C o(F3)). Therefore,

o(Fy) ={2, X,{3}, {4}, {1, 2, 4, 5}, {3, 4}, {1, 2, 5}, {1, 2, 3, 5}}

5. PROBLEM b5

We first show that the sequence of F,,(t) is an ascending chain. Let
x € F,,_1(t). Then, by definition, f,_1(z) > t. But f,(z) > f.-1(z) >
t, so that F,(t) D F,_1(t) for all ¢.

Using this, by definition nh_glo F.(t) = G F,.(t).

Suppose now that @ € |J,—, F,,(t). Thgrzl,1 for some N, f,(x) >t for
all n > N, and since this is an increasing sequence, f(z) > f,(x) >t

for all n € N. By definition, this shows that x € F(t), so that

lim F,(t) C F(t)

n—oo

To prove this inclusion is strict, consider the sequence of functions
defined by f,(z) = —%. It is clear that fi(z) < fo(x) < ..., and
furthermore we see that the f,, converge pointwise to f = 0.

Now set ¢t = 0. Then for all n € N, F},(0) is the set of all  such that
z?/n < 0, which is clearly just the singleton {0}. Thus, we see that

Tim F, (0) = {0}.



4 KELLER VANDEBOGERT

Now for F'(0), since f(x) = 0 for all x, F'(0) is in fact R, so we clearly

have strict inclusion. *

lActually, an even simpler example shows how strict this inclusion really is:
Just define f,(z) = —1/n. Then f, — 0 uniformly, and F,,(0) = @ for all n but
F(t)=R.



